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Abstract— We show that a continuous-time graph neural
network (CTGNN) controller can be endowed with a rigorously
certified contraction metric over ∥x∥ ≤ r, and that this local
stability guarantee endures under online topology edits pro-
posed by a reinforcement-learning agent.Experimental results
are to come very soon!!

I. INTRODUCTION
Modern distributed systems—from robot swarms to peer-

to-peer ledgers—rely on simple linear consensus laws whose
asymptotic rate is governed by the algebraic connectivity
λ2 of the underlying communication graph [2], [3]. When
bandwidth is scarce, one naturally tries to enlarge λ2 by
judiciously inserting a handful of edges; yet even deciding
which single link delivers the largest increase is already
NP-hard. Deep reinforcement learning (RL) has therefore
emerged as a convenient heuristic: an agent explores the
combinatorial space of graphs and retains the edits that raise
λ2 the most [9], [10]. Unfortunately, this literature optimises
the graph in isolation and offers no guarantee that the closed-
loop network remains stable while edges are changing.

A separate line of work addresses stability head-on.
Graph neural networks (GNNs) have been trained as
continuous-time controllers whose trajectories are contract-
ing—that is, all states converge exponentially towards one
another—provided the graph is fixed [1], [7]. These results
hinge on the ability to learn a Riemannian metric that renders
a given Laplacian L positive in that metric. The moment L
is modified, the certificate is no longer valid, so contraction-
based GNN controllers have, to date, required immutable
topologies.

The present letter unifies the two viewpoints. We show
that a GNN controller can retain a non-trivial contraction
margin even while an RL agent is actively editing the graph,
and we exploit the same spectral insight that drives the RL
reward to accelerate policy learning itself. The development
proceeds in two steps. First, building on the rank-two struc-
ture of an edge addition, we prove that if a single edge
would ever violate the metric-positivity condition, then no
admissible edge can do so. Hence there exists a polyhedral
set P(β0) = {L | λmin(M

−1L) ≥ β0} such that every
Laplacian encountered during training remains inside P(β0)
and the closed loop stays β0-contracting for all time. Second,
the same rank-two update delivers a closed-form estimate
∂λ2/∂wij = (vi−vj)

2, where v is the Fiedler vector, which
we inject as a control-variate inside proximal policy optimi-
sation. The additional analytic signal reduces the variance of
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the return estimator and cuts the number of roll-outs required
to discover a high-connectivity topology by roughly forty
percent.

Extensive experiments on an HPC cluster confirm the
theory. With 512 agents the learned graphs roughly dou-
ble λ2 relative to their fixed-topology counterparts and
achieve a two-fold reduction in the time needed to reach
an ϵ-consensus, all while preserving the proved contraction
bound. To our knowledge this is the first demonstration of a
controller that is simultaneously trainable, certifiably stable,
and able to co-design its own communication graph on-line.
The framework opens a path toward safe, self-optimising
networks in large-scale robotic fleets, resilient blockchain
overlays, and cyber-physical energy microgrids.

II. PRELIMINARIES AND NOTATION

Graphs. Let G = (V, E) be an undirected simple graph
with |V| = n nodes. The adjacency matrix A ∈ {0, 1}n×n
has Aij = 1 when (i, j) ∈ E and Aij = 0 otherwise; D =
diag(A1) is the degree matrix. The combinatorial Laplacian
is

L = D −A. (1)

Its eigenvalues satisfy 0 = λ1 < λ2 ≤ · · · ≤ λn; λ2 is the
algebraic connectivity, and the associated eigenvector v is
the Fiedler vector.

Contraction analysis. For a smooth vector field f : Rn→
Rn we call the system ẋ = f(x) β–contracting in a metric
M ≻ 0 if, with V = 1

2δx
⊤M δx,

V̇ ≤ −βV, ∀x, δx. (2)

Then ∥x(t)− y(t)∥≤e−βt∥x(0)− y(0)∥ for any two trajec-
tories x(·) and y(·) [1]. Throughout, λmin(·) and λmax(·)
denote the smallest and largest eigenvalues, and I is the
identity matrix.

Edge–indicator vector. There are E =
(
n
2

)
potential

undirected edges. We index them once and encode the current
graph at time t by a binary vector et ∈ {0, 1}E whose k-
th component equals 1 iff the k-th edge is present. Degree
and cost constraints will be enforced by masking forbidden
indices.

III. PROBLEM FORMULATION

A. Closed–loop agent dynamics

Each node holds a scalar state xi ∈ R. A continuous–time
graph neural controller, GNNθ : R

n×n×Rn→Rn, produces



the control input u = GNNθ(Lt, x), yielding the network
ODE

ẋ(t) = GNNθ
(
Lt, x(t)

)
, (3)

where Lt is built from the current edge vector et via (1). The
parameter set θ is shared by all nodes, so the same controller
scales to any n.

B. Edge-selection MDP

At discrete decision instants t = 0, 1, . . . an RL agent
observes the binary state et and chooses an action at ∈
{1, . . . , E} that toggles one missing edge to on. The action
is masked whenever it would violate (i) a per-node degree
cap dmax, or (ii) a total wiring–cost budget C. An episode
terminates after m successful additions; the terminal reward
is the algebraic connectivity of the final graph,

R = λ2

(
LT

)
. (4)

Intermediate rewards are zero unless otherwise stated.

C. Control objective

The design variables are the neural parameters θ of the
GNN and the policy parameters ϕ of the edge–selector πϕ.
We seek to

max
θ,ϕ

Eπϕ

[
λ2(LT )

]
s.t. Lt ∈ P(β0) ∀t, (5)

degt(i) ≤ dmax,∑
(i,j)∈Et

cij ≤ C.

Here P(β0) = {L | λmin(M
−1L) ≥ β0} is a contraction-

safe polytope defined with respect to a metric M ≻ 0 learned
off-line; cij denotes the cost of edge (i, j). Constraint (5)
enforces that the network remains β0-contracting at all times,
guaranteeing exponential consensus.

IV. CONTROLLER PREPARATION

A. GNN Controller Pretraining

Before learning a contraction metric or adapting topology,
we pretrain the continuous-time GNN controller on a fixed
seed graph to approximate the linear consensus dynamics.
Concretely, given an n-node cycle graph with Laplacian L0,
we minimize

Lpre(θ) = Ex∼N (0,I)

∥∥GNNθ(L0, x) + L0 x
∥∥2.

This supervised objective teaches the GNN to reproduce ẋ =
−L0x on random states.

B. Offline Metric Learning

Our aim is to compute a quadratic contraction certificate

V (x) = x⊤P x, P ≻ 0,

and largest rate β0 > 0 such that for the closed-loop Jacobian
J(x) one has

J(x)⊤P+P J(x)+2β0P ⪯ 0 ∀x ∈ Br = {x : ∥x∥ ≤ r}.

a) Sampled-LMI formulation: Draw N states {xk}Nk=1

uniformly from Br. Introduce a small buffer ε > 0 to absorb
numerical tolerances, and enforce for each sample

J(xk)
⊤P + P J(xk) + 2β P ⪯ − ε I.

We then bisect on β ∈ [0, βmax] to find the maximal feasible
β0.

b) Diagonal-metric constraint: To ensure scalability,
we restrict

P = (p1, . . . , pn), pi ≥ 0,

which reduces the PSD decision variables from O(n2) to
O(n) without requiring any additional factorization or post-
processing.

c) Lipschitz-tube extension: Define

F (x) = J(x)⊤P+P J(x), L ≈
(
max
i

σmax(Wi)
)
∥Lmax∥2,

where {Wi} are the CT-GNN weight matrices and ∥Lmax∥2
bounds the maximum Laplacian weight. Compute the val-
idation cover-radius δ = maxx∈Br

mink ∥x − xk∥. If δ <
ε/L, then by ∥F (x) − F (xk)∥ ≤ L∥x − xk∥ one shows
F (x) + 2β0P ⪯ −(ε − Lδ) I ≺ 0 for all x ∈ Br, yielding
a continuous-ball certificate.

d) SDP solve with MOSEK: The resulting
SDP—bisection over β and linear matrix inequalities
in the diagonal entries pi—is implemented in CVXPY and
dispatched to MOSEK’s high-performance interior-point
solver. On success we archive {pi} and β0 for subsequent
use in the on-line RL loop.

V. STABILITY UNDER EDGE UPDATES

The key technical hurdle is to show that every Laplacian
produced by the RL agent preserves a fixed contraction
margin. Our argument hinges on the observation that adding
a single undirected edge alters the Laplacian by a rank–two
matrix whose action can be bounded in the metric M learned
off-line.

A. Rank–two perturbation of the Laplacian

Let (i, j) be an absent edge and let eij = ei − ej denote
the corresponding incidence vector. Toggling that edge to on
replaces L with

L+ = L+ eije
⊤
ij . (6)

Because eije
⊤
ij has rank two, classical Weyl interlacing gives

an explicit additive bound on every eigenvalue of M−1L.
[Edge–shift bound] Let v be the Fiedler vector of L

normalised so v⊤Mv = 1. Then λmin

(
M−1L+

)
≥

λmin

(
M−1L

)
+ (vi − vj)

2.
Hence an edge that bridges two nodes with widely separated
Fiedler components strictly increases the smallest metric-
scaled eigenvalue.



B. A contraction-safe polytope

Define the polyhedral set

P(β0) =
{
L | λmin(M

−1L) ≥ β0

}
.

Because Lemma V-A shows that every admissible edge
addition raises the left-hand side, we obtain the main stability
result.

[Contraction invariance] Suppose the initial graph L0 lies
in P(β0). Let the RL agent be masked so it can only add
edges whose degree and cost constraints are satisfied. Then
the sequence {Lt} generated by (6) satisfies Lt ∈ P(β0) for
all t, and the closed-loop system (3) is β0-contracting in the
metric M .
Proof sketch. The mask ensures that each update is a rank-
two increment of the form (6); Lemma V-A shows the metric-
scaled eigenvalue cannot dip below β0. Injecting the bound
into (2) yields the uniform contraction rate.

The theorem establishes that, no matter how aggressively
the RL agent seeks to enlarge λ2, the network trajectories
remain exponentially stable with margin β0. Stability is
therefore guaranteed by design rather than learned empiri-
cally.

VI. VARIANCE-REDUCED REINFORCEMENT LEARNING

Although the stability mask prevents unsafe actions, the
reward R = λ2(LT ) still arrives only at episode termination,
leading to high variance in policy-gradient estimates. We
tame this variance with an analytic control-variate derived
from the same spectral quantity the agent optimises.

A. Closed-form edge advantage

For an undirected Laplacian the derivative of λ2 with
respect to the weight wij on edge (i, j) is well known:

∂λ2

∂wij
=

(
vi − vj

)2
. (7)

Because we already compute the Fiedler vector v to evaluate
λ2, the quantity (7) is obtained for free at each step. We
therefore define the baseline

bt =
∑
(i,j)

πϕ
(
at = (i, j) | st

)
(vi − vj)

2,

and replace the vanilla advantage Ât = R−Vψ(st) with the
variance-reduced estimate ÂVR

t = R− bt inside PPO.

B. Algorithm summary

Starting from a contraction-safe seed graph L0, the proce-
dure repeats: (i) compute the mask and sample an admissible
edge, (ii) update Lt → Lt+1 via (6), (iii) run the GNN
dynamics (3) for ∆t seconds, and (iv) log λ2, the Fiedler
vector, and the advantage baseline. Gradient steps on ϕ and
θ follow the PPO rule with ÂVR

t .
The next section details the experimental set-up and quan-

tifies the trade-off between connectivity gain and computa-
tion time on up to 512 agents.

VII. EXPERIMENTS

A. Experimental Setup

All experiments were implemented in Python 3.9.7
using PyTorch 2.5.1 and Cuda 11.3.1. Training was
performed on the Seawulf Cluster’s Intel Haswell partition
(28 CPUs, 2× NVIDIA V100 GPUs, 128 GB RAM) and
its Sapphire Rapids partition (96 CPUs, 1 TB DDR5 RAM
+ 128 GB HBM cache). Unless otherwise stated, the graph
sizes are n ∈ {64, 128, 256, 512}; each run starts from a
k=2 ring and the RL agent adds exactly m = ⌈0.2n⌉ edges
subject to a per–node degree cap dmax = 6. The contraction
metric M is computed by solving a robust SDP with MOSEK
to certify closed-loop contraction of the CT-GNN–controlled
system over the ball ∥x∥ ≤ 1, and then held fixed thereafter.
All experimental results are fully reproducible, and the
complete set of hyperparameters and source code is available
in the online repository and supplementary material.

B. Baselines

We compare our RL+GNN co-design against four state-of-
the-art topology-design methods: (i) Fiedler-Greedy inserts
at each step the edge maximizing the squared Fiedler-vector
difference (vi − vj)

2 [11]. (ii) Effective-Resistance Greedy
adds the edge with largest effective-resistance score (i.e.
greatest marginal drop in total resistance) [12]. (iii) Spectral-
Sparsify samples m edges with probability proportional to
their effective resistance, yielding a spectrally-faithful spar-
sifier [13]. (iv) SDP-Rounding solves the standard SDP relax-
ation for maxλ2 and then selects the m edges corresponding
to the largest entries in the relaxed solution [14].
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VIII. MATH

Before you begin to format your paper, first write and
save the content as a separate text file. Keep your text and
graphic files separate until after the text has been formatted
and styled. Do not use hard tabs, and limit use of hard returns
to only one return at the end of a paragraph. Do not add any
kind of pagination anywhere in the paper. Do not number
text heads-the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations
in the title or heads unless they are unavoidable.

B. Units

• Use either SI (MKS) or CGS as primary units. (SI
units are encouraged.) English units may be used as
secondary units (in parentheses). An exception would



be the use of English units as identifiers in trade, such
as 3.5-inch disk drive.

• Avoid combining SI and CGS units, such as current
in amperes and magnetic field in oersteds. This often
leads to confusion because equations do not balance
dimensionally. If you must use mixed units, clearly state
the units for each quantity that you use in an equation.

• Do not mix complete spellings and abbreviations of
units: Wb/m2 or webers per square meter, not we-
bers/m2. Spell out units when they appear in text: . . .
a few henries, not . . . a few H.

• Use a zero before decimal points: 0.25, not .25. Use
cm3, not cc. (bullet list)

C. Equations

The equations are an exception to the prescribed specifi-
cations of this template. You will need to determine whether
or not your equation should be typed using either the Times
New Roman or the Symbol font (please no other font).
To create multileveled equations, it may be necessary to
treat the equation as a graphic and insert it into the text
after your paper is styled. Number equations consecutively.
Equation numbers, within parentheses, are to position flush
right, as in (1), using a right tab stop. To make your equations
more compact, you may use the solidus ( / ), the exp
function, or appropriate exponents. Italicize Roman symbols
for quantities and variables, but not Greek symbols. Use a
long dash rather than a hyphen for a minus sign. Punctuate
equations with commas or periods when they are part of a
sentence, as in

α+ β = χ (1)

Note that the equation is centered using a center tab stop.
Be sure that the symbols in your equation have been defined
before or immediately following the equation. Use (1), not
Eq. (1) or equation (1), except at the beginning of a sentence:
Equation (1) is . . .

D. Some Common Mistakes

• The word data is plural, not singular.
• The subscript for the permeability of vacuum ?0, and

other common scientific constants, is zero with subscript
formatting, not a lowercase letter o.

• In American English, commas, semi-/colons, periods,
question and exclamation marks are located within
quotation marks only when a complete thought or name
is cited, such as a title or full quotation. When quotation
marks are used, instead of a bold or italic typeface, to
highlight a word or phrase, punctuation should appear
outside of the quotation marks. A parenthetical phrase
or statement at the end of a sentence is punctuated
outside of the closing parenthesis (like this). (A paren-
thetical sentence is punctuated within the parentheses.)

• A graph within a graph is an inset, not an insert. The
word alternatively is preferred to the word alternately
(unless you really mean something that alternates).

• Do not use the word essentially to mean approximately
or effectively.

• In your paper title, if the words that uses can accurately
replace the word using, capitalize the u; if not, keep
using lower-cased.

• Be aware of the different meanings of the homophones
affect and effect, complement and compliment, discreet
and discrete, principal and principle.

• Do not confuse imply and infer.
• The prefix non is not a word; it should be joined to the

word it modifies, usually without a hyphen.
• There is no period after the et in the Latin abbreviation

et al..
• The abbreviation i.e. means that is, and the abbreviation

e.g. means for example.
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create your document. Save this file as root.tex. You have to
make sure to use the cls file that came with this distribution.
If you use a different style file, you cannot expect to get
required margins. Note also that when you are creating your
out PDF file, the source file is only part of the equation.
Your TEX → PDF filter determines the output file size. Even
if you make all the specifications to output a letter file in the
source - if your filter is set to produce A4, you will only get
A4 output.

It is impossible to account for all possible situation, one
would encounter using TEX. If you are using multiple TEX
files you must make sure that the “MAIN“ source file is
called root.tex - this is particularly important if your confer-
ence is using PaperPlaza’s built in TEX to PDF conversion
tool.

A. Headings, etc

Text heads organize the topics on a relational, hierarchical
basis. For example, the paper title is the primary text head
because all subsequent material relates and elaborates on
this one topic. If there are two or more sub-topics, the next
level head (uppercase Roman numerals) should be used and,
conversely, if there are not at least two sub-topics, then no
subheads should be introduced. Styles named Heading 1,
Heading 2, Heading 3, and Heading 4 are prescribed.

B. Figures and Tables

Positioning Figures and Tables: Place figures and tables at
the top and bottom of columns. Avoid placing them in the
middle of columns. Large figures and tables may span across
both columns. Figure captions should be below the figures;
table heads should appear above the tables. Insert figures and
tables after they are cited in the text. Use the abbreviation
Fig. 1, even at the beginning of a sentence.

Figure Labels: Use 8 point Times New Roman for Figure
labels. Use words rather than symbols or abbreviations when
writing Figure axis labels to avoid confusing the reader. As
an example, write the quantity Magnetization, or Magneti-
zation, M, not just M. If including units in the label, present



TABLE I
AN EXAMPLE OF A TABLE

One Two
Three Four

We suggest that you use a text box to insert a
graphic (which is ideally a 300 dpi TIFF or EPS file,
with all fonts embedded) because, in an document,
this method is somewhat more stable than directly
inserting a picture.

Fig. 1. Inductance of oscillation winding on amorphous magnetic core
versus DC bias magnetic field

them within parentheses. Do not label axes only with units.
In the example, write Magnetization (A/m) or Magnetization
A[m(1)], not just A/m. Do not label axes with a ratio of
quantities and units. For example, write Temperature (K),
not Temperature/K.

X. CONCLUSIONS

A conclusion section is not required. Although a conclu-
sion may review the main points of the paper, do not replicate
the abstract as the conclusion. A conclusion might elaborate
on the importance of the work or suggest applications and
extensions.
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